Cell cycle-dependent expression of mammalian E2-C regulated by the anaphase-promoting complex/cyclosome.
نویسندگان
چکیده
Progression through mitosis requires the precisely timed ubiquitin-dependent degradation of specific substrates. E2-C is a ubiquitin-conjugating enzyme that plays a critical role with anaphase-promoting complex/cyclosome (APC/C) in progression of and exit from M phase. Here we report that mammalian E2-C is expressed in late G(2)/M phase and is degraded as cells exit from M phase. The mammalian E2-C shows an autoubiquitinating activity leading to covalent conjugation to itself with several ubiquitins. The ubiquitination of E2-C is strongly enhanced by APC/C, resulting in the formation of a polyubiquitin chain. The polyubiquitination of mammalian E2-C occurs only when cells exit from M phase. Furthermore, mammalian E2-C contains two putative destruction boxes that are believed to act as recognition motifs for APC/C. The mutation of this motif reduced the polyubiquitination of mammalian E2-C, resulting in its stabilization. These results suggest that mammalian E2-C is itself a substrate of the APC/C-dependent proteolysis machinery, and that the periodic expression of mammalian E2-C may be a novel autoregulatory system for the control of the APC/C activity and its substrate specificity.
منابع مشابه
Molecular characterization of plant ubiquitin-conjugating enzymes belonging to the UbcP4/E2-C/UBCx/UbcH10 gene family.
The anaphase promoting complex or cyclosome is the ubiquitin-ligase that targets destruction box-containing proteins for proteolysis during the cell cycle. Anaphase promoting complex or cyclosome and its activator (the fizzy and fizzy-related) proteins work together with ubiquitin-conjugating enzymes (UBCs) (E2s). One class of E2s (called E2-C) seems specifically involved in cyclin B1 degradati...
متن کاملAdenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome
Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is...
متن کاملThe anaphase-promoting complex/cyclosome: APC/C.
The major ubiquitin ligase required for mitosis is the anaphase-promoting complex/cyclosome (APC/C). This unusually complex E3 ubiquitin ligase targets cell-cycle-related proteins such as cyclins and securin for degradation by the proteasome in mitosis and meiosis. The APC/C is regulated by phosphorylation, as well as by various activators and inhibitors that alter its substrate specificity at ...
متن کاملThe human papillomavirus type 18 E2 protein is a cell cycle-dependent target of the SCFSkp2 ubiquitin ligase.
The human papillomavirus type 18 (HPV-18) E2 gene is inactivated in cervical carcinoma after integration of the viral DNA into the host cellular genome. Since E2 represses the transcription of the two viral oncogenes E6 and E7, integration which allows their strong expression is considered a major step in transformation by HPV. We show here that E2 is specifically degraded at the end of the G(1...
متن کاملActivity of the APCCdh1 form of the anaphase-promoting complex persists until S phase and prevents the premature expression of Cdc20p
Cell cycle progression is driven by waves of cyclin expression coupled with regulated protein degradation. An essential step for initiating mitosis is the inactivation of proteolysis mediated by the anaphase-promoting complex/cyclosome (APC/C) bound to its regulator Cdh1p/Hct1p. Yeast APC(Cdh1) was proposed previously to be inactivated at Start by G1 cyclin/cyclin-dependent kinase (CDK). Here, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 11 8 شماره
صفحات -
تاریخ انتشار 2000